文章编号: 0258-7025(2009)Supplement 1-0048-04

瓦级 980 nm 掺镱单模光纤激光器理论及实验研究

邹淑珍 李平雪* 王凌昊 陈 檬 李 港

(北京工业大学激光工程研究院,北京 100124)

摘要 从速率方程出发,得出准三能级掺镱光纤激光器的输出功率、斜率效率、抽运阈值功率和最佳光纤长度的表达式,并理论分析了掺镱光纤激光器中的准三能级和四能级增益关系,为抑制四能级起振和确定光纤长度范围提供理论依据。实验中采用光纤端面直接作为腔镜的平平腔结构,当光纤长度为 36.5 cm 时,人纤抽运光功率为2 W 时,最终获得两端总输出功率为 1.32 W 的 980 nm 单模激光输出,总斜率效率达到 75.3%,实验结果与理论数值 模拟结果相符,对应的光光转换效率为 66%(从入纤 946 nm 抽运光到 980 nm 激光输出)。另外,980 nm 激光经过 BIBO 晶体倍频后得到总功率为 15 mW 的 490.8 nm 蓝绿光输出,倍频转换效率为 1.1%。

关键词 激光器;光纤激光器;准三能级;单模掺镱光纤;倍频

中图分类号 TN248.1 文献标识码 A doi: 10.3788/CJL200936s1.0048

Theoretical and Experimental Investigation of over 1 W Single-Mode Yb-Doped Fiber Laser at 980 nm

Zou Shuzhen Li Pingxue Wang Linghao Chen Meng Li Gang

(Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract Based on rate equations, this paper gives expressions of the output power, the pump power threshold, the slope efficiency, and the fiber optimal length of the quasi-three-level Yb-doped fiber laser. The laser gain relationship between quasi-three-level mode and four-level mode in Yb-doped fiber laser is also given, which provides a theoretical basis for suppressing the four-level transmissions and determining the range of the fiber length. In the experiment, a plano-plano cavity consisting of two 0° fiber ends is adopted as cavity mirrors. A quasi-three-level Yb-doped single-mode fiber laser totally emitted 1.32 W of single-mode laser output at 980 nm from two ends with the slope efficiency of 75.3% when the fiber length is 36.5 cm. The corresponding optical conversion efficiency is 66% from incidence pump power at 946 nm to the laser power at 980 nm. Besides, a total power of 15 mW at 490.8 nm is obtained by frequency doubling the laser at 980 nm with BIBO with the conversion efficiency of 1.1%.

Key words lasers; fiber laser; quasi-three-level; single-mode Yb-doped fiber; frequency doubling

1 引 言

光纤激光器在激光加工、激光医疗、光通信及国 防等应用领域得到越来越广泛的应用,是当前激光领 域中发展最快的激光技术之一。在众多的掺杂光纤 激光器中,掺镱光纤激光器发展最为迅速。当前高功 率光纤激光器都是以四能级的掺镱光纤激光器 (1030~1200 nm)为主。准三能级掺镱光纤激光器的 输出波长为 980 nm,980 nm 激光器是掺铒光纤放大 器的重要抽运光源。随着密集波分复用的频道数的 增加,对掺铒光纤放大器输出激光的功率提出了越来 越高的要求^[1],获得高功率高光束质量980 nm激光源 就成为需要解决的关键问题之一。另外 980 nm 激光 通过倍频还可以获得 490 nm 蓝绿光的输出,490 nm 蓝绿波段是海水的窗口波段,在海底通信、海洋资源 探测中具有重要应用。当前利用单模掺镱光纤激光 器产生准三能级 980 nm 激光相关研究已有报道,如

作者简介: 邹淑珍(1986一), 女, 硕士研究生, 主要从事掺镱光纤激光器方面的研究。

E-mail: 02061233@emails. bjut. edu. cn

导师简介:李 港(1950-),男,教授,博士生导师,主要从事固体激光器和激光技术及其开发和应用等方面的研究。 E-mail:lig@bjut.edu.cn

* 通信联系人。E-mail: pxli@bjut.edu.cn

基金项目:北京市教委科技计划(05101011200701)资助课题。

Corning 公司用 1.1 W 的 Nd: YAG 固体激光器抽运 单包层掺镱全光纤激光器获得了 0.65 W 的单模 980 nm激光^[2]。2005 年巴黎南大学用 915 nm Nd: YVO4固体激光器抽运单包层掺镱光纤激光器获得了 2 W 的 978 nm 激光输出,经过周期极化铌酸锂 (PPLN)倍频晶体获得 83 mW 的 489 nm 蓝绿光^[3]。

本文首先对准三能级掺镱光纤激光器进行了理 论分析,基于速率方程和激光器稳定条件进行理论 分析得出光纤最佳长度的表达式,它们是数值模拟 和优化实验参数的理论依据;基于准三能级与四能 级的增益关系,通过合理选择光纤长度,有效抑制了 四能级(1030 nm 左右)的起振,从而保证了准三能 级的有效运转。基于理论分析结果设计和优化实验 条件,实现了光纤两端总功率为1.32 W 的 980 nm 激光的单包层掺镱光纤激光输出,激光器斜率效率 为75.3%。通过 BIBO 晶体倍频 980 nm 激光得到 总功率为 15 mW 的 490.8 nm 蓝绿光输出, 倍频转 换效率为 1.1%。

2 光纤激光器的理论分析

由于 980 nm 准三能级掺镱光纤激光器对激光 重吸收效应严重,选择光纤长度时,需要同时满足光 纤对抽运光的充分吸收以及对激光不能有过多的重 吸收的条件,通过理论推导可以得到最佳光纤长度 的表达式。另外,镱离子发射截面另一个峰值点 1030 nm,其对应的吸收截面很小,导致四能级 1030 nm 左右很容易起振。因此抑制四能级起振,是保证激光 器中准三能级运转的前提。980 nm 激光增益和 1030 nm左右的增益均与光纤长度有关。因此选择适 当的长度对准三能级掺镱光纤激光器来说至关重要。

从速率方程出发,得出准三能级掺镱光纤激光器的单端输出功率 *P*_{las}的表达式为

$$P_{\rm las} = \eta' \cdot (P_{\rm p}^{\rm in} - P_{\rm p}^{\rm th}) = \frac{(1 - R_{\rm ls})T_{\rm l}}{T_{\rm eff}} \cdot \left[1 - (G_{\rm max}TR_{\rm s})^{-q}\right] \{1 + T_{\rm 2}^{2}R_{\rm 2p} \cdot (G_{\rm max}TR_{\rm s})^{-q}\} \cdot \left\{P_{\rm p}^{\rm in} - \frac{h\gamma_{\rm p}P_{\rm s}^{\rm cs}[\alpha_{\rm s}L - \ln(TR_{\rm s})]}{\left[1 - (G_{\rm max}TR_{\rm s})^{-q}\right] \cdot \{1 + T_{\rm 2}^{2}R_{\rm 2p} \cdot (G_{\rm max}TR_{\rm s})^{-q}\}}\right\},$$
(1)

斜率效率 $\eta = \eta_q \eta' (\eta_q 表示量子效率), 抽运阈值功率 P_p^{th} 可由(1) 式得出。理论推导得出激光器两端的输出激$ 光斜率效率相等, 即光纤两端输出的激光功率相等。最佳光纤长度可以通过对激光输出功率求导, 当 $<math>dP_{las}/dL = 0$ 时, 计算得到最佳光纤长度为

$$L_{\rm opt} = \frac{1}{\alpha_{\rm s}q - \alpha_{\rm p}} \cdot \ln\left\{\frac{T_2^2 R_{\rm 2p} - 1 + \{(T_2^2 R_{\rm 2p} - 1)^2 - 8T_2^2 R_{\rm 2p} P_{\rm s}^{\rm CS} \alpha_{\rm s} / [(\alpha_{\rm s}q - \alpha_{\rm p}) \cdot P_{\rm p}^{\rm in}]\}^{1/2}}{4T_2^2 R_{\rm 2p} (TR_{\rm s})^{-q}}\right\},$$
(2)

式中 R_{1s} , R_{2s} 表示两端面对激光的反射率, R_{2p} 表示 远离抽运端的端面对抽运光的反射率, T_1 , T_2 代表 光纤两端到腔镜的传输系数,传输损耗分别是 $1-T_1$, $1-T_2$,其中

$$T = T_{1} \cdot T_{2},$$

$$R_{s}^{2} = R_{1s} \cdot R_{2s},$$

$$T_{eff} = (T_{2}^{2}R_{2s} - 1)\frac{T_{1}^{2}R_{1s}}{TR_{s}} - (T_{1}^{2}R_{1s} - 1),$$

Pⁱⁿ_p为增益光纤中的入射抽运光,α_s(α_p)为激光(抽运光)吸收系数,P^{CS}_s为激光交叉饱和功率,P^{IS}_p为抽运光自饱和功率。对三能级镱离子

$$P_{s}^{\text{CS}} = \frac{A_{\text{eff}}}{\Gamma_{s}} \frac{1}{\tau_{2}} \frac{1}{\sigma_{s}^{\text{a}} + \sigma_{s}^{\text{e}}}, \quad P_{p}^{\text{IS}} = \frac{A_{\text{eff}}}{\Gamma_{p}} \frac{1}{\tau_{2}} \frac{1}{\sigma_{p}^{\text{a}}},$$

$$p \text{ an } \mathbf{J} \propto \mathbb{E} \quad q = P_{s}^{\text{CS}} / P_{p}^{\text{IS}}, \quad \mathbf{f} \neq \mathbf{f} \neq \mathbf{f}$$

式中饱和功率比 $q = P_s^{CS}/P_p^{IS}$ 。最大增益 $G_{max} = \exp[(\alpha_p/q - \alpha_s) \cdot L]$ 。

掺镱光纤激光器抑制四能级起振对掺镱光纤长 度的取值有所限制。由于在单模掺镱光纤中 1030 nm 左右的增益与 980 nm 的增益呈线性关系^[4]

$$G^{1030} = G^{980} \frac{\sigma_{\rm e}^{1030} / \sigma_{\rm e}^{946} - \sigma_{\rm a}^{1030} / \sigma_{\rm a}^{946}}{\sigma_{\rm e}^{980} / \sigma_{\rm e}^{946} - \sigma_{\rm a}^{980} / \sigma_{\rm a}^{946}} + G^{946} \frac{\sigma_{\rm e}^{1030} / \sigma_{\rm e}^{980} - \sigma_{\rm a}^{1030} / \sigma_{\rm a}^{980}}{\sigma_{\rm e}^{946} / \sigma_{\rm e}^{980} - \sigma_{\rm a}^{946} / \sigma_{\rm a}^{980}}, \qquad (3)$$

980 nm 激光在光纤中的增益由超越方程^[5]数值模 拟得到

$$P_{p}^{in} - P_{p}^{in} \left(\frac{G^{980}}{G_{max}}\right)^{q} = P_{s}^{CS}(\alpha_{s}L - \ln G^{980}) + P_{s}^{in}(G^{980} - 1).$$

$$(4)$$

式中 $G^{946} = -\alpha_p, \sigma_a^{\lambda}$ 和 σ_e^{λ} 分别是波长 λ 对应的吸收 截面和发射截面。在单模光纤中设定归一化模式密 度比: $\phi_a^{1030}/\phi_a^{980} = 1, \phi_a^{1030}/\phi_a^{946} = 1$ 。 由(4)式可以 看出,980 nm 激光增益与光纤长度有关,为了抑制光 纤中的四能级起振,获得 980 nm 准三能级有效运转, 就必须使四能级的增益小于三能级的增益。所以设 计增益光纤长度必须均衡考虑激光的最大输出和抑 制四能级起振对光纤长度的要求,即光纤长度在满 足抑制四能级起振的前提下,需要符合以下原则:当 抽运光传播到光纤末端时,剩余的抽运光功率正好 等于光纤准三能级起振的阈值功率,此时输出激光 功率最大,激光器效率也最高。

3 980 nm 准三能级激光器的实验分析

根据理论模拟和参数设计,采用图1的激光器结构进行实验,在实验中抽运源是用自行研制的 LD 抽运的 946 nm Nd:YAG 固体激光器。半导体激光器输出的808 nm激光直接由光纤导出,尾纤芯径为 200 µm,通过透镜耦合系统将 808 nm 光聚焦到晶体中,晶体的掺杂原子数分数为 1.0%。Nd:YAG 固体激光器采用平凹腔结构,将晶体表面直接镀膜作为腔镜,用曲率半径为 100 nm,对 946 nm 的透射率为 4%的凹面镜作为输出镜,晶体两面都镀对 1064 nm 和 1320 nm 的高透膜以防止四能级的起振。Nd:YAG 晶体直接用水冷却(*T*=11 ℃)。Nd:YAG 固体激光器能够输出4.23 W 近衍射极限的 946 nm 激光。946 nm 激光通过高反镜 M1,二色镜 M2 和透镜 L3 耦合入射到光纤中。

图 1 980 nm 掺镱单模光纤激光器原理图 Fig. 1 Experiment set-up of the 980 nm single-mode Yb-doped fiber laser

用芯径为 6 μm,对抽运光 946 nm 吸收系数大 约为 30 dB/m 的单模掺镱光纤作为增益介质,掺镱 光纤激光器亚稳态粒子寿命 $\tau_2 = 0.76$ ms,腔内传 输系数: $T_1 = 0.8$, $T_2 = 0.8$,激光和抽运光交叠因子 $\Gamma_s = 1$, $\Gamma_p = 1$ 。根据(3)式计算可得实验光纤的 1030 nm 左右与 980 nm 的增益关系式为: $G_{1030} =$ 0.14 G_{980} +1.1 α_p 。根据四能级与准三能级增益关系 计算得到,当光纤长度 L 小于 41 cm 时,980 nm 的 增益大于 1030 nm 左右的增益。还要考虑激光最 佳输出的问题,即光纤长度存在最佳值,计算得到光 纤最佳长度为 34 cm。

实验中,截取一段长 36.5 cm 的单模光纤,将光 纤两端均磨成 0°角。光纤的两平行端面起谐振腔的 腔镜的作用,光纤端面对 980 nm 激光有 4%的菲涅 耳反射率。光纤的两端面均有 980 nm 激光输出,如 图 1 所示,946 nm 高反镜 M3 用来滤出 980 nm 激光。

测量得到从 M2 出射的 980 nm 激光最大功率为

642 mW,从 M3 出射的 980 nm 激光最大功率为 681 mW,946 nm 抽运光阈值约为 68 mW,光纤激光 器的总斜率效率为 75.3%。实验测量值与理论模拟 值:单端 980 nm 激光输出最大功率 735 mW,946 nm 抽运光阈值功率 63.9 mW,与光纤激光器的总斜率 效率为76%基本相符。掺镱光纤激光器的光光转 换效率为 66%(从入纤 946 nm 抽运光到 980 nm 激 光输出)。图 2 是光纤激光器的输出曲线图,从图中 可以看出 980 nm 激光随 946 nm 抽运功率增加基 本呈线性增长。当 946 nm 抽运功率为 3.44 W 时 (抽运光耦合效率为 58.1%),对应总的 980 nm 激光 输出功率达到 1.32 W。当 946 nm 抽运光功率继续 增加时,其光束质量变差,980 nm 激光输出变小。 图 3是 980 nm 激光的光谱图,激光在 978~982 nm 均有输出,输出线宽为4 nm,中心波长为 980 nm。 光纤激光器在 1030 nm 左右没有起振。

图 2 980 nm 单模掺镱光纤激光器输出曲线

Fig. 2 Output power of the 980 nm single-mode Yb-doped fiber laser versus the 946 nm pump power

图 3 光纤长度为 36.5 cm 时,980 nm 单模掺镱 光纤激光器的光谱图

Fig. 3 Spectrogram of the 980 nm single-mode Yb-doped fiber laser when L=36.5 cm

另外截取两端长度分别为 23.5 cm 和 43 cm 光 纤进行实验。当 L=23.5 cm 时,对应激光器两端 总的 980 nm 输出激光功率为 788 mW,斜率效率为 41.5%。当 L=43 cm 时,如图 4 光谱图所示,激光 器不但输出 980 nm 激光,还输出波长在 1022 nm 和 1030 nm 附近的激光。所以当光纤长度小于最 佳值时,光纤不能充分地吸收抽运光导致激光器的 斜率效率和输出激光功率较低,而当光纤长度增加 到 41 cm 以上时,四能级增益开始大于准三能级增 益,激光器开始产生四能级波长的激光,并随着光纤 长度的增加,四能级激光在振荡波长竞争中越来越 具有优势。所以在本实验采用接近最佳光纤长度的 掺镱光纤来实现准三能级激光器的最佳输出。

图 4 光纤长度为 43 cm 时,单模掺镱光纤激光器 980 nm 附近的光谱图(a)和 1030 nm 附近的光谱图(b) Fig. 4 Spectrogram of the single-mode Yb-doped fiber laser around 980 nm (a) and around 1030 nm (b) when L=43 cm

用示波器对 980 nm 激光的输出情况进行监测,发现激光器的输出并不是一直连续的,而是时而 以脉冲形式输出。根据实验分析得出这种自脉冲现 象主要是因为在抽运光功率比较低的情况下,远离 抽运输入的掺镱光纤出现了可饱和吸收效应,使激 光器输出产生调 Q 脉冲。

4 980 nm 激光倍频

将两端的单模 980 nm 激光分别通过透镜 L5,L6 聚焦到两个 3 mm×3 mm×10 mm 的 BIBO 晶体上进 行倍频,获得了总功率为 15 mW 的 490.8 nm 蓝绿激 光,倍频转换效率为1.1%。选择倍频晶体的关键因 素有:非线性系数、接受波长、温度带宽和走离角等。 一般倍频准三能级掺镱光纤激光器产生 490 nm 的蓝 光通常使用周期性极化晶体:PPLN和 PPKTP^[3,6]。 尽管周期性极化晶体的非线性系数很高,但是它的 接受波长和温度带宽都很小,而且周期性极化晶体 的厚度方向尺寸很小,对基频光的光束质量和耦合 系统要求很高。所以在实验中考虑使用其他的倍频 晶体。BIBO 晶体是一种比较新型的晶体,其非线性 系数(d_{eff}=3.24)是 LBO 的 4 倍和 BBO 倍频晶体的 1.6倍,损伤阈值很高与 LBO 晶体相似,最大接受角 度和最大接受温度满足实验的要求。BIBO 晶体在 I 类相位匹配情况下的走离角比 LBO 晶体的大,所以 获得的倍频光光束质量较差。综合考虑后,在本实验 中选用 BIBO 晶体对单模 980 nm 激光进行倍频获得 总功率为 15 mW 的 490.8 nm 蓝光。通过在晶体表 面镀膜还可以进一步提高倍频转换效率。

5 结 论

通过对准三能级单模掺镱光纤激光器理论分析 得到激光器的激光输出功率、斜率效率、抽运光阈值 和光纤最佳长度的表达式;综合考虑抑制四能级对 光纤长度的要求,合理设计光纤激光器掺镱光纤长 度。实验中,采用自制的 Nd:YAG 激光器作抽运 源,以光纤端面直接作为腔镜的简单谐振腔结构,实 现了光纤激光器两端总共 1.32 W 的 980 nm 单模 激光输出,其斜率效率为 75.3%,与理论模拟结果 基本相符。用 BIBO 晶体分别倍频后,获得 15 mW 的490.8 nm蓝光,倍频转换效率为 1.1%。

参考文献

- K. Muro, T. Fujimoto, S. Okada *et al.*. High power 980 nm pump laser diodes with decoupled confinement hetero-structure [C]. Conf. Optical Amplifiers and Their Applications, 2001. 145~147
- 2 L. A. Zenteno, J. D. Minelly, M. Dejneka *et al.*, 0. 65 W single-mode Yb-fiber laser at 980 nm pumped by 1.1 W Nd: YAG [J]. OSA Trends in Optics and Photonics, 2000, 34: 440~443
- 3 A. Bouchier, G. Lucas-Leclin, P. Georges *et al.*. Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978 nm in a periodically-poled MgO: LiNbO₃ waveguide[J]. Opt. Express, 2005, **13**(18): 6974~6979
- 4 C. Barnard, P. Myslinski, Chrostowski *et al.*, Analytical model for rare-earth-doped fiber amplifiers and lasers [J]. *IEEE J. Quantum Electron.*, 1994, **30**(8): 1817~1830
- 5 J. Nilsson, J. D. Minelly, R. Paschotta *et al.*. Ring-doped cladding pumped single-mode three-level fiber laser [J]. *Opt. Lett.*, 1998, **23**(5): 355~357
- 6 D. B. S. Soh, C. Codemard, S. Wang et al., A 980-nm Ybdoped fiber MOPA source and its frequency doubling[J]. IEEE Photon. Technol. Lett., 2004, 16(4): 1032~1034